Influence of Diking and Climate on Salinities in Gilbert and Gunnison Bays of the Great Salt Lake

Sarah Null¹, Wayne Wurtsbaugh¹, Craig Miller²

¹Dept. of Watershed Sciences, Utah State University ²Utah Division of Water Resources

Outline

- Historic range of GSL level
- Anticipated climate changes
- Diking history
- Estimated whole lake elevation and salinity
 - Climate change sensitivity analysis
- Dike management opportunities

Great Salt Lake Elevation Range

Reminder - Climate change has been occurring in the basin for a long time:

Surface inflow ~ 64%

Groundwater ~ 2.3%

Direct precip ~ 33%

Major surface inflows:

Bear River ~ 55% Weber River ~ 12%

vvebel Rivel ~ 12%

Jordan River ~ 26%

~ 93%

~ 99%

Anticipated Climate Change

- Air temperature \uparrow 3 5°C by 2100
 - Snowfall to rainfall
 - Changing runoff timing
 - Increasing evapotranspiration
 - Increased lake evaporation
 - Winter flooding & drier summers
- Precipitation possibly increasing in northern Utah

Will we have a salt flat like the Aral Sea?

Or variability between both those conditions?

Solid Fill Railway Causeway - 1959

Farmington Bay auto causeway - 1969

Dikes alter water and salt balance

Figure 5. Schematic diagram of water balance for Great Salt Lake, Utah (Loving, Waddell, and Miller, 2000).

Dikes alter water and salt balance

Figure 6. Schematic diagram of salt balance for Great Salt Lake, Utah (Loving, Waddell, and Miller, 2000).

12

Modeling Needed

- Climate → runoff
- Runoff lake level → lake area
 - » salinity
 - » evaporation
 - » lake level
- Management model of Bear, Weber, Jordan/Provo
 - » Land use change
 - » Water diversion and regulation

Empirical Model of lake level fluctuations due to changes in precipitation

Wagner, F.H. 1983-84. Rising Salt Lake Level: Fluctuation or portent. Ecotone 11:3-4 (Ecology Center, Utah State University)

Note: Climate change expected to alter runoff more than precipitation

Mean annual flow is reduced in all watersheds with modeled air temperature increases

(T is modeled temperature, with increases of 2, 4, and $6^{\circ}C$)

Watershed	Annual Average Flow (mcm)				Change from Basecase (%)		
	Basecase	T2	T4	T6	T2	T4	T6
Feather	5776	5649	5470	5264	-2.2	-5.3	-8.8
Yuba	3020	2960	2891	2806	-2.0	-4.3	-7.1
Bear	492	475	459	445	-3.6	-6.7	-9.6
American	3556	3448	3332	3218	-3.1	-6.3	-9.5
Cosumnes	603	571	543	518	-5.2	-10.0	-14.0
Mokelumne	979	946	918	887	-3.4	-6.2	-9.4
Calaveras	330	319	310	301	-3.3	-6.3	-8.9
Stanislaus	1561	1523	1482	1435	-2.4	-5.1	-8.1
Tuolumne	2445	2401	2354	2304	-1.8	-3.7	-5.8
Merced	1348	1308	1272	1237	-3.0	-5.6	-8.2
San Joaquin	2294	2265	2235	2201	-1.3	-2.6	-4.1
Kings	2117	2094	2070	2041	-1.1	-2.2	-3.6
Kaweah	586	564	542	519	-3.8	-7.6	-11.5
Tule	199	190	180	171	-4.6	-9.5	-14.3
Kern	926	887	850	813	-4.2	-8.2	-12.2

Null et al. 2010. Hydrologic response and watershed sensitivity to 16 climate warming in California's Sierra Nevada. PLoS one, 5(4):e9932

"Whole Lake" Great Salt Lake Elevation

"Whole Lake" (without RR causeway) Great Salt Lake Elevation and Salinity

Measured Gilbert Bay salinity and estimated "whole lake" salinity if RR causeway not constructed

Measured Salinities in Gilbert and Gunnison Bays in relation to approximate salinity range for *Artemia*

Causeways gates would allow salt and flow to be managed between Gilbert and Gunnison Bays

Questions?

Contact Info

Sarah Null sarah.null@usu.edu

Wayne Wurtsbaugh Wayne.wurtsbaugh@usu.edu

Craig Miller craigmiller@utah.gov

